WIND RUBRIC | Content | 5 | 4 | 3 | 2 | 1 | |---|---|--|---|--|--| | Identify parts of a wind
driven electric generation
system | Student can identify
traditional energy
sources and make
comparisions between
wind energy and fossil
fuels | Student can identify
traditional energy
sources and make
some comparisions
between wind energy
and fossil fuels | Student can identify
traditional energy
sources but cannot
make comparisons
between wind energy
and fossil fuels | Student can identify
few traditional energy
sources and cannot
make comparisions
between wind energy
and fossil fuels | Student cannot identify traditional energy sources | | Identify how each of the parts affects the ability for the system to generate electricity | Student describes how
every part affects the
system's ability to
generate electricity | Student describes
how most parts
affect the system's
ability to generate
electricity | Student describes
how half of the parts
affect the system's
ability to generate
electricity | Student describes
how less than half of
the parts affect the
system's ability to
generate electricity | Student cannot
describe how any of
the parts affect the
system's ability to
generate electricity | | Design wind driven generator such that voltage output is maximized | Design maximizes
voltage output | Design does not
maximize voltage
output, but is
relatively efficient | Design does not
maximize voltage
and requires large
improvements | Design creates very
low voltage output | Design produces no
voltage output | | Describe why wind is a clean alternative energy source and how it differs from traditional energy sources | Student can identify
traditional energy
sources and make
comparisions between
wind energy and fossil
fuels | Student can identify
traditional energy
sources and make
some comparisions
between wind energy
and fossil fuels | Student can identify
traditional energy
sources but cannot
make comparisons
between wind energy
and fossil fuels | Student can identify
few traditional energy
sources and cannot
make comparisions
between wind energy
and fossil fuels | Student cannot identify traditional energy sources | | Participates in class discussion about fossil fuels, alternative energies, and the basics of how a wind generator works | Student participates
fully in discussion | Student attends to
discussion, but does
not participate fully | Student attends to
discussion but does
not participate | Student rarely attends
to discussion and
does not participate | Student does not
attend to discussion
and does not
participate | | Follows proper lab safety procedures | Student follows proper lab safety procedures | | | | Student does not
follow proper lab
safety procedures | |---|--|--|---|---|---| | Uses appropriate equations (density, mass, volume, temp, etc.) to solve problems | Student can write
equations, articulate
what the equation
means, and utilize
equations to get a
correct answer | Student can write
equations, and can
explain and utilize
equation with few
errors | Student can write
equations, and can
explain and utilize
equations with some
errors | Student can write
equations, but cannot
explain or utilize the
equations | Student cannot
write, explain, or use
equations | | Define and uses appropriate vocabulary (density, mass, volume, temp) to describe how pressure and temperate affect gases | Student can define
vocabulary and also
use vocabulary words
properly in context | Student can define
and use most
vocabulary words
properly in context | Student can define
vocabulary but has
trouble using the
vocabulary in
context | Student can define
some vocabulary
words but cannot use
the words properly in
context | Student cannot
define or use
vocabulary words | | Describe how we see these
relationships in weather | Student can describe
the connection
between the
experimental design,
the properties of
gases, and weather | Student can describe
the connection
between the
experimental design,
the properties of
gases, and weather
but description
needs more detail | Student can describe
the connection
between the
experimental design,
the properties of
gases, and weather,
but description is
incomplete | Student can describe
the connection
between the
experimental design
and the properties of
gases OR connections
to weather | Student cannot
make a connection
between the
experimental design,
properties of gases,
and weather | | Describe how kinetic energy produced by wind can be transferred into mechanical and electrical energy, including the mathematical basis for the turbine | Student correctly describes how turbines generate electricity and student correctly uses and describes the equations Kinetic energy= 1/2 (mass) * (Velocity ^2) and Power = 1/2 (vAp)v^2 | Student can explain
how the turbine
generates electricity
and student
correctly uses
equations and can
describe them to
some extent | Student can use equation and provide some description of how a turbine generates electricity, but cannot describe equation adequately | Student can use equation but cannot describe equation adequately and cannot describe how a turbine generates electricity | Student cannot use
or describe equation
or concepts | | Inquiry | 5 | 4 | 3 | 2 | 1 | |---|--|--|---|--|---| | Create a hypothesis | Hypothesis is complete, testable, and includes a statement of why the student expects this outcome based on prior knowledge and experience | Hypothesis is
testable and includes
some thought as to
why the student
expects the outcome. | Hypothesis is either not testable or does not include an explanation of why the student expects the outcome. | Hypothesis is not testable and does not include an explanation of why the student expects the outcome. | Hypothesis totally lacking in thought, untestable, and incomplete | | Design and construct a
turbine that will the test
hypothesis | The design is directly linked to the hypothesis | The design is linked
to the hypothesis,
but the connection is
not adequately
articulated | The design is somewhat linked to the hypothesis and the connection is not adequately articulated | The design shows
little connection to
the hypothesis | The design is not related to the hypothesis | | Describes rationale behind
design | Rationale is complete
and based on scientific
thinking and past
experience | and cojontific | Rationale is lacking
scientific thinking or
a basis in prior
experience but
shows effort | Rationale is lacking
scientific thinking
and basis in past
experience | Rationale is incomplete | | Reflects on their design and proposes changes that could improve the turbine | Reflection is based on
student's test, is
complete and provides
suggestions for
improvement | Reflection shows
thought and
provides suggestions
for improvement,
but the link to the
student's test could
be taken further | Link to student's test
is not articulated
clearly and
suggestions for
improvement are
provided | No logical link to test
or no suggestions for
improvement | No logical link to test
and no suggestions
for improvement | | Identify and discuss variables involved in the turbine design and experimental design (i.e. hair dryer) | Student identifies all
variables involved in
the turbine design as
well as variables in the
experimental design | Student identifies
most variables
involved in the
turbine design as
well as variables in
the experimental
design | Student identifies
variables involved in
turbine design or
experimental design
but not both | Student identifies few
variables invovled in
either turbine or
experimental design | Student identifies no
variables | | Create another hypothesis,
turbine, and experimental
design that reflects air and
wind movement | hypothesis turbine
and design have been | | Few changes have
been made to the
hypothesis, turbine,
AND experimental
design | been made to the
hypothesis, turbine,
OR experimental | No changes have
been made to
original hypothesis,
turbine, or
experimental design | |--|---|--|---|--|---| | Reflect on second test | student's test, is
complete and provides
suggestions for
improvement | Reflection shows
thought and
provides suggestions
for improvement,
but the link to the
student's test could
be taken further | Link to student's test
is stated but unclear
and suggestions for
improvement are
provided | No logical link to test
OR no suggestions for | | | Articulate connections between these activities and science concepts and personal experience | between these
activites and weather,
other forms of | weather, other forms | activites and | Student can describe
few connections
between these
activities and
practical applications | no connections
between these
activities and
practical |